Partitioning carbon dioxide and water vapor fluxes using correlation analysis
نویسندگان
چکیده
Partitioning of eddy covariance flux measurements is routinely done to quantify the contributions of separate processes to the overall fluxes. Measurements of carbon dioxide fluxes represent the difference between gross ecosystem photosynthesis and total respiration, while measurements of water vapor fluxes represent the sum of transpiration and direct evaporation. Existing flux partitioning procedures typically require additional instrumentation and/or invoke scaling assumptions that may or may not be appropriate. Here, we present a novel flux partitioning procedure that relies upon the simple assumption that contributions to the measured high-frequency time series of carbon dioxide and water vapor concentrations derived from stomatal processes (i.e., photosynthesis and transpiration) and nonstomatal processes (i.e., respiration and direct evaporation) separately conform to flux-variance similarity. Vegetation water use efficiency is the only parameter needed to perform the partitioning. We apply this technique to eddy covariance data collected over the course of a growing season above amaize field. Results yielded by the correlation-based partitioning approach are consistent with expected trends throughout the growing season, as photosynthesis and transpiration fluxes increase in parallel with observed increases in maize leaf area. Magnitudes of the derived fluxes compare well with literaturebased values, and short-term, transient features are also detected as both respiration and direct evaporation fluxes are found to respond to wetting events. These results support the validity of the theory-based partitioning approach, which has the benefit of being simultaneously applied to both carbon dioxide and water vapor fluxes, while relying solely upon standard eddy covariance
منابع مشابه
Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia
The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the ca...
متن کاملApplication of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland.
Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obta...
متن کاملEarth ’ s Annual Global Mean Energy Budget J . T . Kiehl and Kevin
The purpose of this paper is to put forward a new estimate, in the context of previous assessments, of the annual global mean energy budget. A description is provided of the source of each component to this budget. The top-ofatmosphere shortwave and longwave flux of energy is constrained by satellite observations. Partitioning of the radiative energy throughout the atmosphere is achieved throug...
متن کاملConcerning the Measurement and Magnitude of Heat, Water Vapor, and Carbon Dioxide Exchange from a Semiarid Grassland
Grassland environments constitute approximately 40% of the earth’s vegetated surface, and they play a key role in a number of processes linking the land surface with the atmosphere. To investigate these linkages, a variety of techniques, including field and modeling studies, are required. Using data collected at the Central Plains Experimental Range (CPER) in northeastern Colorado from 25 March...
متن کاملThe Simplified Exchange Method Revisited' An Accurate, Rapid Method for Computation of Infrared Cooling Rates and Fluxes
The performance and construction of a new algorithm for the calculation of infrared cooling rates and fluxes in terrestrial general circulation models are described in detail. The computational method, which is suitable for use in models of both the troposphere and the middle atmosphere, incorporates effects now known to be important, such as an extended water vapor e-type continuum, careful tr...
متن کامل